Cyclopentadienyldicarbonyl(dithiocarbene)iron Cations

- (22) F. A. Walker, M.-W. Lo, and M. T. Ree, J. Am. Chem. Soc., 98, 5552 (1976).
- (1970).
 (23) A. D. Adler, F. R. Longo, J. F. Finarreli, J. Goldmacker, J. Assour, and L. Korsakoff, J. Org. Chem., 32, 476 (1967).
 (24) M. Gouedard, F. Gaudemer, A. Gaudemer, and C. Riche, J. Chem. Res.
- (M), 511 (1978).
- (25) C. L. Coyle, P. A. Rafson, and E. H. Abbott, Inorg. Chem., 12, 2007 (1973).
 (26) M. D. Joesten and L. J. Schaad, "Hydrogen Bonding", Marcel Dekker,
- (27) M. G. B. Drew, A. H. bin Othman, S. G. McFall, and S. M. Nelson, J. Chem. Soc., Chem. Commun., 558 (1977).

Contribution from the Department of Chemistry and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011

Synthesis of Cyclopentadienyldicarbonyl(dithiocarbene)iron Cations and Their Reactions with Amines

FRED B. MCCORMICK and ROBERT J. ANGELICI*

Received January 11, 1979

Dithiocarbene complexes, $Cp(CO)_2Fe[C(SR)SR']^+$, are easily prepared by $R'SO_3F$ alkylation of the dithioester ligand of $Cp(CO)_2FeC(=S)SR$. The dimethyl derivative, $Cp(CO)_2Fe[C(SCH_3)_2]^+$, shows unusual reactivity toward nucleophilic amines to provide a variety of Cp(CO)₂FeL⁺ derivatives. Primary amines produce isocyanide complexes, Cp(CO)₂Fe(CNR)⁺; secondary amines give amino-thiocarbene complexes, $Cp(CO)_2Fe[C(NR_2)SCH_3]^+$; diamines, amino alcohols, and amino

thiols yield complexes with cyclic carbene ligands, $Cp(CO)_2Fe[CY(CH_2)_nNR']^+$, where Y = NH, O, or S. The novel orthothioformate complex $Cp(CO)_2Fe[C(SCH_3)_3]$ is formed as a byproduct in some of the reactions. Spectral properties of the new complexes are discussed.

Introduction

Transition-metal carbene complexes have become a wellknown class of organometallic compounds.¹⁻⁴ Only recently, however, have complexes with dithiocarbene ligands, M-C-(SR)₂, been isolated. Such complexes have been reported for iron,⁵ chromium,⁶⁻⁸ tungsten,^{7,8} osmium,⁹ and platinum.^{10,11} One route used to prepare dithiocarbene complexes has been alkylation of the thione sulfur atom in dithioester complexes, M-C(=S)SR, by CH₃SO₃F or $[Et_3O]BF_4$.¹⁰ In the present paper, we extend this route to the preparation of Cp-(CO)₂Fe-C(SR)₂⁺ (Cp = η^{5} -C₅H₅) starting with the iron dithioester complexes $Cp(CO)_2Fe-C(=S)SR$ (R = CH₃,¹² $CH_2C_6H_5$).

Since there are no reports describing reactions of the dithiocarbene ligand itself, it was of interest to examine its reactions for the purpose of preparing novel ligands, as well as establishing general patterns of reactivity of this ligand.

Results and Discussion

Preparation and Characterization of Cp(CO)₂Fe[C(SR)SR']⁺ Carbene Complexes. Iron dithioester complexes are readily available through the reaction of $Cp(CO)_2Fe^-$ with carbon disulfide and a suitable alkyl halide (eq 1).¹² Short reaction

$$Cp(CO)_{2}Fe^{-} \xrightarrow{(1) CS_{2}} Cp(CO)_{2}Fe^{-}C(=S)SR + X^{-}$$
(1)
Ia,b
$$RX = CH_{3}I (Ia), C_{6}H_{5}CH_{2}Br (Ib)$$

times are important since other products have been observed by using longer reaction times.¹³ A ruthenium analogue of Ia has been prepared by the same route.¹⁴ The dithioester complexes Ia,b are stable toward air in the solid state, but they decompose slowly when exposed to light.

Alkyl fluorosulfonates readily alkylate the thiocarbonyl sulfur atom of the dithioester ligand to give the corresponding cationic dithiocarbene complexes (eq 2). The yields are

Ia,b
$$\xrightarrow{(1) \text{ R'SO}_3\text{F}}$$
 {Cp(CO)₂Fe[C(SR)SR']}PF₆ (2)
IIa, R = R' = CH₃
IIb, R = CH₃, R' = C₂H₅
IIc, R = CH₂C₆H₅, R' = CH₃

generally in the range of 60-70%. Anion exchange is per-

0020-1669/79/1318-1231\$01.00/0 © 1979 American Chemical Society

formed as the SO_3F^- salts of IIa-c are less stable and less readily crystallized than the PF_6^- salts. In the solid state the yellow crystalline carbene complexes IIa-c show no noticeable decomposition after several months of exposure to air. Complex IIa is slightly soluble in water; it is also stable toward water at room temperature and can be recovered almost quantitatively from aqueous solutions. The carbenes are soluble in polar solvents such as CH_2Cl_2 , CH_3CN , and acetone, slightly soluble in CHCl₃ and THF, and insoluble in nonpolar solvents such as hexanes or Et₂O. Solutions of IIa exposed to air at room temperature are stable for several days. This stability differs markedly from that of a related carbene complex with no stabilizing heteroatomic groups, {Cp- $(CO)_2Fe[C(C_6H_5)H])PF_6$, solutions of which decompose completely within 1 h under similar conditions.¹⁵

The IR spectrum of IIa in CH_2Cl_2 shows two $\nu(CO)$ absorptions at 2058 and 2017 cm⁻¹ with a calculated $\nu(CO)$ force constant^{16a} of 16.8 mdyn/Å. Comparison of this value with the $\nu(CO)$ force constants of 17.6 and 17.1 mdyn/Å found for {CpFe(CO)₃}PF₆^{16b} and {Cp(CO)₂FeCNCH₃}PF₆^{16b} respectively, indicates that the dithiocarbene ligand has a lower π -acceptor/ σ -donor ratio than either the carbonyl or isocyanide ligand, which is consistent with conclusions drawn for other transition-metal carbene complexes.³ The position of the carbene carbon resonance in the ${}^{13}C$ NMR (acetone- d_6) spectrum of IIa occurs at 303 ppm downfield relative to Me₄Si, which is also consistent with previous reports.³

A single line at τ 6.73 is observed for the two methyl groups of the carbene ligand in the ¹H NMR (acetone- d_6) spectrum of IIa. This is in contrast with spectra reported for $\{PtCl-[C(SEt)_2](PPh_3)_2\}BF_4$,¹⁰ $\{PtI[C(SMe)_2](PPh_3)_2\}I$,¹¹ and $\{PtI[C(SEt)_2](PPh_3)_2]I$ ¹¹ which show different resonances for the two alkyl groups of the carbene ligands. The inequivalence of the alkyl groups is explained by the presence of syn and anti R groups

caused by restricted rotation around the C(carbene)-S bonds.^{10,11} When an acetone- d_6 solution of IIa is cooled to -55

°C, the methyl groups become nonequivalent, and two sharp singlets at τ 6.87 and 6.53 are observed. When the solution is warmed, the two singlets broaden, become less intense, and finally coalesce at -2.5 °C. As the sample is warmed further, the signal sharpens to the previously observed singlet at τ 6.73. The equivalence of the methyl groups of IIa is presumably due to rapid rotation around the C(carbene)-S bonds. Single resonances for the R and R' groups in the room-temperature ¹H NMR spectra of IIb and IIc suggest that there is rapid rotation in these complexes as well.

Since the coalescence temperature of IIa is lower (-2.5 °C) than that of Cl(PPh₃)₂Pt[C(SR)₂]⁺ (>30 °C), the rate of rotation around the C(carbene)–S bonds is presumably greater in IIa. This rate difference may be rationalized by suggesting that the Cl(PPh₃)₂Pt⁺ moiety is more electron withdrawing than Cp(CO)₂Fe⁺. This would promote more S→C(carbene) π bonding in the Pt complexes, which would restrict rotation around the C(carbene)–S bonds. That the Cl(PPh₃)₂Pt⁺ group is indeed more electron withdrawing than the Cp(CO)₂Fe⁺ group is supported by the higher ν (CO) force constant for {Cl(PPh₃)₂Pt(CO)}BF₄ (18.2 mdyn/Å)¹⁷ than for {CpFe-(CO)₃}PF₆ (17.6 mdyn/Å).^{16b} The steric bulk of the two triphenyl phosphine ligands in Cl(PPh₃)₂Pt[C(SR)₂]⁺ may also be a factor in restricting rotation around the C(carbene)–S bonds in the platinum complexes.

Reactions of Cp(CO)₂Fe[C(SCH₃)₂]⁺**.** With Primary Amines. Except for reactions with methylamine and aniline, two products are identified in reactions of IIa with amines. The minor product, usually too little to isolate, is a neutral complex that has been characterized as cyclopentadienyldicarbonyliron trimethylorthothioformate, Cp(CO)₂Fe[C-(SCH₃)₃]; it is formed in reactions of IIa with certain bases. This neutral complex, with ν (CO) values of 2013 and 1964 cm⁻¹ in CH₂Cl₂, is presently under investigation, and an X-ray analysis is in progress, the details of which will be presented in a later report.¹⁸

In all cases, the major product (55-88%) of the reaction of IIa with a primary amine at room temperature in CH₂Cl₂ is a cationic isocyanide derivative (eq 3). With the exception

$$\Pi a + RNH_2 \rightarrow \{Cp(CO)_2Fe(CNR)\}PF_6 + 2HSCH_3 \quad (3)$$

 $\begin{array}{l} R = CH_3 \ (IIIa), \ n\mbox{-}Pr \ (IIIb), \ i\mbox{-}Pr \ (IIIc), \\ cyclohexyl \ (IIId), \ benzyl \ (IIIe), \ C_6H_5 \ (IIIf), \\ CH_2CH_2N(CH_3)_2 \ (IIIg), \ CH(CH_3)C(=O)OCH_3 \ (IIIh), \\ CH_2(CH_2)_2OH \ (IIIi) \end{array}$

of aniline, all of the reactions are usually complete within 1 h. Aniline, a considerably weaker nucleophile, reacts much slower and gives the lowest yield (25%) of the corresponding isocyanide complex. Although no kinetic studies have been carried out on these reactions, the slowness of the aniline reaction suggests that an important step is attack of the amine on the carbene carbon to give an intermediate which subsequently collapses to the product.

In the reaction solutions, these type III complexes undergo further reaction with excess amine to form carbamoyl complexes, Cp(CO)Fe(CNR)[C(=O)NHR], characterized by their ν (CO) absorptions at approximately 2160 and 1950 cm^{-1.16b} Upon evaporation of the amine, they revert to III, as described previously.^{16b}

The spectral characteristics of IIIa-i are generally very similar. Their IR spectra show three bands: 2192-2242 (m) cm⁻¹, ν (CN); 2079-2085 (s) cm⁻¹, ν (CO); 2037-2046 (s) cm⁻¹, ν (CO). The Cp resonance in their ¹H NMR spectra appears at approximately τ 4.25. Exceptions to this are IIIe (τ 4.34), possibly due to shielding effects of the phenyl ring, and IIIf (τ 4.10), most likely due to the weaker donor ability of the isocyanide ligand. Resonances arising from the isocyanide ligands, while consistent with the proposed products, are sometimes broadened or are of unexpected multiplicities due to possible coupling with the nitrogen of the ligand.

With Secondary Amines. The reaction of IIa with secondary amines is very similar to the aminolysis of $(CO)_5Cr[C(OC-H_3)C_6H_5]$.¹⁹ One thiomethoxy group is readily replaced to produce amino-thiocarbene complexes (eq 4). When the IIa + HNR₂ \rightarrow

$${Cp(CO)_{2}Fe[C(SCH_{3})NR_{2}]}PF_{6} + HSCH_{3} (4)$$

IVa-c

 $HNR_2 =$

reaction is run at room temperature in CH_2Cl_2 , even with a large excess of secondary amine, the second thiomethoxy group is not replaced. Only sterically small amines such as dimethyl or heterocyclic amines will react in this manner to give carbenes of type IV. Diethyl and higher amines are too bulky and give $Cp(CO)_2Fe[C(SCH_3)_3]^{18}$ as the only identified organometallic product. Infrared spectral studies indicate that, when reacted with IIa, piperazine, pyrrolidine, and aziridine also form amino-thiocarbene complexes of type IV, but these products were not isolated. A large amount of intractable tar with an IR spectrum characteristic of isocyanide complexes of type III is also formed in the aziridine reaction.

The IR spectra of complexes IVa-c contain strong ν (CO) absorptions at 2046–2047 and 2001–2002 cm⁻¹. These low frequencies, as compared to those of IIa (2058 and 2017 cm⁻¹), reflect the greater ability of nitrogen to donate π -electron density into the carbene carbon atom.^{3,20} In the ¹H NMR spectra of the complexes, singlets are found at τ 4.40–4.45 and τ 7.04–7.09 for the Cp and SCH₃ groups, respectively. Complex IVa shows nonequivalent amine methyl groups in its room temperature ¹H NMR which is consistent with a large N→C(carbene) π interaction.

With Diamines. The reaction of IIa with appropriate diamines at room temperature in CH_2Cl_2 provides a general, high-yield synthesis of cyclic diaminocarbene complexes (eq 5).

$$H_2 N NHR = H_2 N(CH_2)_3 NH_2 (Va), o-C_6 H_4 (NH_2)_2 (Vb), H_2 NCH (CH_3) CH_2 NH_2 (Vc), H_2 NC (CH_3)_2 CH_2 NH_2 (Vd), H_2 N (CH_2)_2 NHCH_3 (Ve)$$

When IIa is allowed to react with an equimolar amount of ethylenediamine, approximately equal amounts of carbene and isocyanide products are always obtained (eq 6). Analytically

$$IIa + H_2N(CH_2)_2NH_2 \xrightarrow{-HSCH_3} \left\{ C_P(CO)_2Fe\left[C_{N} \\ H \\ Vf \\ \left\{ C_P(CO)_2FeCNCH_2 - \right]_2 \right\} \left[PF_6 \right]_2 \quad (6)$$

$$VI$$

pure samples of the binuclear isocyanide complex VI are obtained by fractional crystallization, but Vf obtained in this manner is always contaminated with traces of VI. However, when IIa is allowed to react with 2 equiv of the monotosylate

Cyclopentadienyldicarbonyl(dithiocarbene)iron Cations

salt of ethylenediamine, pure samples of Vf are obtained (eq 7). It was hoped that $Cp(CO)_2Fe[CN(CH_2)_2NH_3^+]^+$ could IIa + $2H_2N(CH_2)_2NH_3^+Ts^- \rightarrow$

$$Vf + 2HSCH_3 + [H_3N(CH_2)_2NH_3]^{2+}Ts_2^{-}$$
 (7)

be isolated as a possible intermediate in this reaction. But when IIa is reacted with 1 equiv of $H_2N(CH_2)_2NH_3^+Ts^-$, only equal amounts of IIa and Vf are obtained; thus, there is no evidence for the isocyanide intermediate.

Infrared spectra of the cyclic diaminocarbene complexes Va-f are quite similar to those of the amino-thiocarbene complexes IVa-c, displaying strong ν (CO) absorptions at 2050-2056 and 2000-2006 cm⁻¹. In their ¹H NMR spectra, protons attached to the nitrogens cannot be observed in any of these complexes; presumably this is due to quadrupolar interactions with the nitrogen atoms.

With Amino Alcohols and Amino Thiols. Both ethanolamine and β -mercaptoethylamine react with IIa at room temperature in a manner similar to diamines to give cyclic carbene complexes (eq 8). However, 3-aminopropanol seems to behave

II a + H₂N(CH₂)₂YH

$$\left\{ C_{p}(CO)_{2}Fe \left[C_{V} \right] \right\} PF_{6} + 2HSCH_{3} \quad (8)$$
VIIa,b

Y = O(VIIa), S(VIIb)

simply as a primary amine to give IIIi, $\{Cp(CO)_2Fe[CN-(CH_2)_3OH]\}PF_6$, as indicated in eq 3. When IIIi is stirred in CH₂Cl₂ at room temperature for several days, bands at 2058 and 2011 cm⁻¹ slowly develop while those of IIIi slowly diminish. This indicates that IIIi may slowly cyclize to give a carbene complex of type VII, but this cyclic carbene has not been isolated. Infrared data (very weak $\nu(CN)$ absorptions in spectra of the reaction mixtures) also indicate that the reactions shown in eq 8 may proceed through an isocyanide intermediate analogous to IIIi, but these intermediates have not been isolated.

The availability of VIIa,b as well as the diaminocarbene Vf allows us to compare the effect of the heteroatoms on the CO groups. The $\nu(CO)$ frequencies and force constants^{16a} of $\{Cp(CO)_2Fe[CNHCH_2CH_2NH]\}PF_6$ (Vf: 2053, 2003 cm⁻¹; 16.61 mdyn/Å), $\{Cp(CO)_2Fe[CNHCH_2CH_2S]\}PF_6$ (VIIb: 2059, 2014 cm⁻¹; 16.75 mdyn/Å), and $\{Cp(CO)_2Fe[CN-HCH_2CH_2O]\}PF_6$ (VIIa: 2063, 2017 cm⁻¹; 16.81 mdyn/Å) increase as the heteroatom is changed from nitrogen to sulfur to oxygen. The same trend is found in comparing carbene complexes where both heteroatoms are changed. This is seen in the following series: $\{Cp(CO)_2Fe[CNHCH_2CH_2NH]\}PF_6$ (Vf: 2053, 2003 cm⁻¹: 16.61 mdyn/Å) (CO) Fe[CN

(Vf: 2053, 2003 cm⁻¹; 16.61 mdyn/Å), {Cp(CO)₂Fe[C-(SCH₃)₂]}PF₆ (2058, 2017 cm⁻¹; 16.77 mdyn/Å), {Cp-(CO)₂Fe[C(OCH₃)₂]}PF₆ (2068, 2020 cm⁻¹; 16.87 mdyn/Å), ²² These results suggest that the carbene ligand becomes a weaker donor ligand as the heteroatoms are changed in the order N > S > O.

> S > O. With Miscellaneous Reagents. Ammonia reacts readily with IIa in CH₂Cl₂ at room temperature to give the neutral cyanide complex in fair (34%) yield (eq 9). Its spectral characteristics

$$IIa + 2NH_3 \rightarrow Cp(CO)_2Fe(CN) + NH_4^+ + 2HSCH_3$$
VIII
(9)

are identical to those reported for the complex obtained by a different route.²¹ Infrared studies indicate that NaN_3 also reacts very rapidly with IIa in CH₃CN at room temperature

to give $Cp(CO)_2Fe(CN)$, $Cp(CO)_2FeC(SCH_3)_3$, and other unidentified products.

When cyclohexylphosphine, $C_6H_{11}PH_2$, was allowed to react with IIa in hopes of preparing a complex with the unknown C=P-R ligand, no such product was obtained. No reaction was observed between IIa and I⁻, Cl⁻, I₂, HCl, HF, or PPh₃ at room temperature.

Experimental Section

General Information. $Cp(CO)_2FeC(=S)SCH_3$ was prepared as reported previously.¹² Reagent grade chemicals were used without further purification. Tetrahydrofuran (THF) was distilled from $NaK_{2.8}^{23}$ under N₂ immediately prior to use. Unless otherwise noted, the following procedures did not require the use of an inert atmosphere.

Infrared spectra were recorded on a Perkin-Elmer 237B or 337 spectrometer equipped with an expanded-scale recorder calibrated with gaseous CO. Routine ¹H NMR spectra were recorded on Perkin-Elmer Hitachi R-20B or Varian A-60 spectrometers; temperature-dependent ¹H NMR spectra were recorded on a Varian HA-100 spectrometer. Carbon-13 spectra were run on a Bruker HX-90 FT NMR spectrometer; $Cr(acac)_3$ (~0.1 M) was added to the solutions to reduce data collection time.²⁴ Tetramethylsilane (Me₄Si) was employed as the internal standard for all NMR spectra. Elemental analyses are given in Table I.

Synthesis of Complexes. Cp(CO)₂Fe[C(\Longrightarrow S)SCH₂C₆H₅] (**Ib**). This complex was prepared from BrCH₂C₆H₅ (6.8 mL, 57.2 mmol) and 10.00 g (28.3 mmol) of [CpFe(CO)₂]₂ following the procedure¹² used for Cp(CO)₂Fe[C(\Longrightarrow S)SCH₃] (Ia). The evaporated reaction mixture was extracted with Et₂O until the extracts were only a faint yellow. The extracts were filtered through Celite and then evaporated to a dark, viscous oil. Repeated fractional crystallization of this oil from hexanes and/or Et₂O at -20 °C afforded 7.23 g (37%) of Ib as dark orange crystals. IR (CH₂Cl₂): 2031 (s), 1982 (s) cm⁻¹. ¹H NMR (CDCl₃): τ 2.61 (s, C₆H₅), 5.03 (s, C₅H₅), 5.39 (s, CH₂). Mp 73-75 °C.

 $\{Cp(CO)_2Fe[C(SCH_3)_2]\}PF_6$ (IIa). The methyl dithioester, Ia (0.50 g, 1.87 mmol), in 20 mL of CH₂Cl₂ was stirred with CH₃SO₃F (0.20 mL, 2.47 mmol) for 1 h. The resulting dark solution was evaporated to a dark oil which was washed with Et₂O. The oil was dissolved in a minimum amount of acetone, placed on an anion-exchange column (Amberlite IRA-400, 35×1 cm) in the PF₆⁻ form, and eluted slowly with acetone. The yellow acetone fraction was collected, concentrated to ~10 mL, and filtered, and hexanes were carefully added such that two layers formed. When the solution was collect to -20 °C, yellow crystals of IIa precipitated as the hexanes slowly diffused into the CH₂Cl₂ solution. After the crystals were washed with Et₂O and dried under high vacuum, 0.55 g (69%) of IIa was isolated. IR (CH₂Cl₂): 2058 (s), 2017 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.43 (s, C₅H₅), 6.73 (s, 2 CH₃). Mp 163-165 °C.

 $[Cp(CO)_2Fe[C(SCH_3)SC_2H_3]]PF_6$ (IIb). This complex was prepared by the same method as IIa. Starting with Ia (0.50 g, 1.87 mmol) and C₂H₃SO₃F (0.25 mL, 2.47 mmol), 0.50 g (60%) of IIb was obtained as fine yellow crystals. IR (CH₂Cl₂): 2060 (s), 2017 (s) cm⁻¹. ¹H NMR (acetone-d₆): τ 4.37 (s, C₃H₃), 6.16 (q, CH₂), 6.69 (s, SCH₃), 8.44 (t, CH₃). Mp 117–119 °C.

{Cp(CO)₂Fe[C(SCH₃)SCH₂C₆H₅]}PF₆ (IIc). The method used to prepare IIa was also employed for this complex. Starting with Ib (1.00 g, 2.90 mmol) and CH₃SO₃F (0.30 mL, 3.70 mmol) in 40 mL of CH₂Cl₂, 0.93 g (64%) of IIc was obtained as bright yellow crystals. IR (CH₂Cl₂): 2056 (s), 2017 (s) cm⁻¹. ¹H NMR (acetone-d₆): τ 2.54 (s, C₆H₅), 4.34 (s, C₅H₅), 4.99 (s, CH₂), 6.63 (s, CH₃). Mp 150 °C dec.

 $\{Cp(CO)_2Fe[CNCH_3]\}PF_6$ (IIIa). Methylamine was bubbled through 50 mL of CH₂Cl₂ containing IIa (0.205 g, 0.49 mmol) for 1 h. The bright yellow solution was concentrated to 10 mL, and the product was precipitated by addition of hexanes and cooling to -20 °C. After recrystallization from acetone with hexanes at -20 °C, 0.108 g (62%) of IIIa was isolated as a pale yellow powder. The complex displayed the same physical characteristics as observed for a sample prepared by a different route.^{16b}

{Cp(CO)₂Fe[CNCH₂CH₂CH₃]}PF₆ (IIIb). An 80-mL solution of CH₂Cl₂ containing IIa (0.64 g, 1.49 mmol) and *n*-propylamine (125 μ L, 1.52 mmol) was stirred for 1 h and then evaporated to a dark oil. The oil was washed with Et₂O to remove any neutral species. The residue was crystallized from CH₂Cl₂ with Et₂O at -20 °C to

Table I. Elemental Analyses of the Complexes

		% calcd			% exptl		
complex		С	Н	N	С	Н	N
$Cp(CO)_2Fe[C(=S)SCH_2C_6H_5]$	Ib	52.34	3.51		52.38	3.58	·
$\left\{ Cp(CO)_{2}Fe[C(SCH_{3})_{2}] \right\} PF_{6}$	IIa	28.05	2.59		28.04	2.57	
$\{Cp(CO)_2Fe[C(SCH_3)SC_2H_5]\}PF_{\delta}$	IIb	29.88	2.96		29.85	2.97	
$\{Cp(CO)_{2}Fe[C(SCH_{3})SCH_{2}C_{6}H_{5}]\}PF_{6}$	IIc	38.11	3.00		37.98	2.90	
$Cp(CO)_{2}Fe[CNCH_{3}]$	IIIa	29.78	2.22	3.86	29.93	2.34	3.91
$Cp(CO)_2Fe[CNCH_2CH_2CH_3]$ PF ₆	IIIb	33.79	3.09		33.68	3.28	
$Cp(CO)_2Fe[CNCH(CH_3)_2]$ PF ₆	IIIc	33.79	3.09	3.58	33.67	3.03	3.61
${Cp(CO)}_{2}Fe[CNC_{6}H_{11}]$	IIId	39.01	3.74	3.25	38.79	3.72	3.19
$\{Cp(CO)_{2}Fe[CNCH_{2}C_{6}H_{5}]\}PF_{6}$	IIIe	41.03	2.75	3.19	41.26	2.80	3.16
$\{Cp(CO)_{2}Fe[CNC_{6}H_{5}]\}PF_{6}$	IIIf	39.56	2.37	3.30	39.50	2.38	3.30
$\{Cp(CO)_{2}Fe[CNCH_{2}CH_{2}N(CH_{3})_{2}]\}PF_{6}$	IIIg	34.31	3.60	6.67	34.16	3.60	6.60
${Cp(CO)_{2}Fe[CNCH(CH_{3})C(=O)OCH_{3}]}PF_{6}$	IIIĥ	33.13	2.78	3.22	33.15	2.79	3.21
${Cp(CO)_2 Fe[CN(CH_2)_3OH]}PF_6$	IIIi	32.46	2.97	3.44	32.65	3.02	3.43
${Cp(CO)_2 Fe[C(SCH_3)N(CH_3)_2]}$ PF ₆	IVa	31.08	3.32	3.29	31.26	3.42	3.44
$Cp(CO)_{2}Fe[C(SCH_{3})N(CH_{2})_{4}CH_{2}]$	IVb	36.15	3.90	3.01	36.26	4.47	3.24
${Cp(CO)_2Fe[C(SCH_3)N(CH_2CH_2)_2O]}$ PF ₆	IVc	33.42	3.45	3.00	33.51	3.47	2.92
{Cp(CO), Fe(CNH(CH), NH1}PF	Va	32 54	3 23	6.90	32 03	3 21	6 80
	٧u	52.54	5.25	0.90	52.05	5.21	0.80
${Cp(CO)_{2}Fe[CNH(o-C_{6}H_{4})NH]}PF_{6}$	Vb	38.21	2.52		38.21	2.51	
	Va	22.54	1 11	(00	22 70	2.20	
	vc	32.54	3.23	0.90	32.70	3.29	6.86
${Cp(CO)_2Fe[CNHC(CH_3)_2CH_2NH]}PF_6$	Vd	34.31	3.60	6.67	33.98	3.58	6.59
$\{Cp(CO)_2Fe[CNH(CH_2)_2NCH_3]\}PF_6$	ve	32.54	3.23	6.90	32.81	3.30	6.80
$\{Cp(CO)_{2}Fe[CNH(CH_{2})_{2}NH]\}PF_{6}$	Vf	30.64	2.83	7.15	30.89	2.86	7.08
$\{[Cp(CO), FeCNCH, -], \}$ [PF,],	VI	29.86	1.95	3.87	29.95	2.01	3.92
${Cp(CO)_2Fe[CNH(CH_2)_2O]}PF_6$	VIIa	30.56	2.56		30.66	2.67	
		20.24	0.44		00.04		
$UP(UO)_2Fe[UNH(UH_2)_2S]$ }PF ₆	VIID	29.36	2.46	3.42	29,36	2.49	3.37

give 0.51 g (87%) of IIIb as light orange-yellow crystals. IR (CH₂Cl₂): 2226 (s), 2081 (vs), 2041 (vs) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.26 (s, C₅H₅), 6.04 (t, CN–CH₂), 8.22 (m, CH₂CH₃), 8.96 (t, CH₃). Mp 118–120 °C.

{Cp(CO)₂Fe[CNCH(CH₃)₂]|PF₆ (IIIc). This complex was prepared in the same manner as IIIb. Starting with 0.10 g (0.23 mmol) of IIa and 20 μ L (0.23 mmol) of isopropylamine in 20 mL of CH₂Cl₂, 0.064 g (70%) of IIIc was isolated as cream-yellow needles. IR (CH₂Cl₂): 2215 (s), 2082 (vs), 2042 (vs) cm⁻¹. ¹H NMR (acetone-d₆): τ 4.24 (s, C₅H₅), 5.61 (m, CH), 8.51 (doublet of triplets, 2 CH₃). Mp 98–99 °C.

{Cp(CO)₂Fe[CNC₆H₁₁]}PF₆ (IIId). This derivative was prepared in the same manner as IIIb. From the reaction of IIa (0.25 g, 0.58 mmol) and cyclohexylamine (75 μ L, 0.66 mmol) in 50 mL of CH₂Cl₂ for 35 min, 0.182 g (72%) of IIId was isolated as tan needles. IR (CH₂Cl₂): 2212 (s), 2081 (vs), 2042 (vs) cm⁻¹. ¹H NMR (acetone-d₆): τ 4.20 (s, C₃H₃), 5.80 (m, CN-CH), 8.06 and 8.46 (m, 5 CH₂). Mp 135-137 °C.

{Cp(CO)₂Fe[CNCH₂C₆H₅]]PF₆ (IIIe). This complex was prepared by a route analogous to that used for IIIb. Starting with 0.10 g (0.23 mmol) of IIa and 52 μ L (0.47 mmol) of benzylamine in 20 mL of CH₂Cl₂, 0.091 g (88%) of IIIe was obtained as yellow-orange needles. IR (CH₂Cl₂): 2225 (s), 2082 (vs), 2042 (vs) cm⁻¹. ¹H NMR (acetone-d₆): τ 2.66 (s, C₆H₅), 4.34 (s, C₅H₅), 4.83 (s, CH₂). Mp 168–170 °C.

{Cp(CO)₂Fe[CNC₆H₅]]PF₆ (IIIf). A large excess of aniline (1.0 mL, 11.00 mmol) was stirred with IIa (0.20 g, 0.47 mmol) in 40 mL of CH₂Cl₂ for 4 days. The reaction mixture was then evaporated to an oil and washed with Et₂O. The resulting tar was dissolved in a small volume of CH₂Cl₂ and treated with decolorizing carbon. After filtration, adding Et₂O to the yellow solution and cooling the mixture to -20 °C afforded 0.05 g (25%) of 1IIf as pale yellow needles. IR (CH₂Cl₂): 2192 (s), 2085 (s), 2046 (s) cm⁻¹. ¹H NMR (acetone-d₆): τ 2.40 (m, C₆H₅), 4.10 (s, C₅H₅). Mp 153-155 °C.

{Cp(CO)₂Fe[CNCH₂CH₂N(CH₃)₂]}PF₆ (IIIg). This complex was prepared in the same manner as IIIb. Starting with 0.10 g (0.23 mmol) of IIa and 30 μ L (0.27 mmol) of N,N-dimethylethylenediamine in .20 mL of CH₂Cl₂, 0.05 g (51%) of IIIg was isolated as cream-yellow needles. IR (CH₂Cl₂): 2228 (s), 2082 (vs), 2042 (vs) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.27 (s, C₅H₅), 5.96 (t, CN-CH₂), 7.27 (t, CH₂), 7.68 (s, 2 CH₃). Mp 75-76 °C.

{Cp(CO)₂Fe[CNCH(CH₃)C(=O)OCH₃]}PF₆ (IIIh). The hydrochloride salt of alanine methyl ester (0.065 g, 0.47 mmol) was suspended as a fine powder in 50 mL of CH₂Cl₂. Ammonia gas was bubbled through the solution for 45 min to generate the soluble amino acid ester and insoluble NH₄Cl. Nitrogen was then bubbled through the solution to purge it of ammonia. After filtration and concentration of the solution to ~20 mL, IIa (0.10 g, 0.23 mmol) was added and stirred for 4 h. The reaction mixture was then evaporated to an oil and washed with Et₂O. Crystallization of the residue from acetone with Et₂O at -20 °C gave 0.063 g (62%) of III has large, bright orange crystals. IR (CH₂Cl₂): 2223 (s), 2083 (vs), 2043 (vs), 1759 (s) cm⁻¹. ¹H NMR (acetone-d₆): τ 4.20 (s, C₅H₅), 4.86 (q, CH), 6.19 (s, OCH₃), 8.26 (d, CH₃). Mp 68-70 °C.

{**Cp(CO)**₂**Fe[CN(CH**₂)₃**OH**]}**PF**₆ (**III**). This complex was prepared in the same manner as IIIb. Starting with 0.10 g (0.23 mmol) of IIa and 20 μ L (0.26 mmol) of 3-aminopropanol in 20 mL of CH₂Cl₂ and stirring the mixture for 15 min, we isolated 0.064 g (67%) of IIIi as orange-yellow needles. IR (CH₂Cl₂): 2226 (vs), 2081 (vs), 2040 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.24 (s, C₅H₅), 5.92 (t, CNCH₂), 6.26 (t, CH₂O), 8.00 (m, CH₂). Mp 99–101 °C.

 $[Cp(CO)_2Fe[C(SCH_3)N(CH_3)_2]]PF_6$ (IVa). Dimethylamine was bubbled through 20 mL of CH₂Cl₂ containing IIa (0.10 g, 0.23 mmol) for 10 min, and the solution was stirred for an additional 30 min. After evaporation of the solution to dryness and washing of the solid with Et₂O, the residue was crystallized from acetone with Et₂O at -20 °C to give 0.044 g (44%) of IVa as fine yellow crystals. IR (CH₂Cl₂): 2046 (s), 2001 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.40 (s, C₃H₃), 5.98 (s, NCH₃), 6.24 (s, NCH₃), 7.04 (s, SCH₃). Mp 190 °C dec.

 $[Cp(CO)_2Fe[C(SCH_3)N(CH_2)_4CH_2]]PF_6$ (IVb). This complex was prepared in a manner analogous to that used for IIIb. From 0.20 g (0.47 mmol) of IIa and 93 μ L (0.94 mmol) of piperidine in 40 mL of CH₂Cl₂ with stirring for 2 h, 0.15 g (69%) of IVb was obtained as a yellow powder. IR (CH₂Cl₂): 2047 (s), 2002 (s) cm⁻¹. ¹H NMR

(acetone- d_6): τ 4.45 (s, C₅H₅), 5.63, 6.60, and 8.13 (m, N-

Cyclopentadienyldicarbonyl(dithiocarbene)iron Cations

(CH₂)₄CH₂), 7.09 (s, CH₃). Mp 153-155 °C.

{Cp(CO)₂Fe[C(SCH₃)N(CH₂CH₂)₂O]}PF₆ (IVc). This derivative was prepared in the same manner as IIIb. The reaction of IIa (0.10 g, 0.23 mmol) and morpholine (50 μ L, 0.58 mmol) in 20 mL of CH₂Cl₂ for 3 h yielded 0.069 g (64%) of IVc as yellow needles. IR (CH₂Cl₂): 2047 (s), 2001 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.42 (s, C₅H₅), 5.54 and 6.06 (m, N(CH₂CH₂)₂O), 7.06 (s, CH₃). Mp 185-187 °C dec.

{Cp(CO)₂Fe[CNH(CH₂)₃NH]}PF₆ (Va). A solution of 30 mL of CH₂Cl₂ containing IIa (0.50 g, 1.17 mmol) was added dropwise with stirring to 50 mL of CH₂Cl₂ containing 1,3-diaminopropane (100 μ L, 1.20 mmol) over a period of 30 min. The reaction mixture was stirred for an additional 40 min, evaporated to an oil, and washed with Et₂O. The residue was crystallized from CH_2Cl_2 with Et_2O at -20 °C to give 0.314 g (66%) of Va as cream-yellow needles. IR (CH₂Cl₂): 2051 (s), 2000 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.62 (s, C₅H₅), 6.60 (t, 2 CH₂), 8.00 (m, CH₂). Mp 204 °C.

 $[Cp(CO)_2Fe[CNH(o-C_6H_4)NH]]PF_6$ (Vb). An inert (N₂) atmosphere and N₂-saturated solvents were used in this synthesis. A solution of 20 mL of CH₂Cl₂ containing IIa (0.10 g, 0.23 mmol) and odiaminobenzene (0.05 g, 0.46 mmol) was stirred in a Schlenk tube for 3 days. The dark reaction mixture was evaporated to an oil and chromatographed on a Celite/CH₂Cl₂ column (50 \times 2 cm). A pink band separated from extensive bright blue trailings of unknown composition. The pink band was collected and treated with decolorizing carbon to give a pale yellow solution after filtration. The addition of hexanes to the filtrate (after concentration) and cooling of the solution to -20 °C gave 0.022 g (21%) of Vb as pale yellow needles. IR (CH₂Cl₂): 2056 (s), 2006 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 2.50 (AA'BB', C₆H₄), 4.51 (s, C₅H₅). Mp 230-233 °C.

 $\{Cp(CO)_2Fe[CNHCH(CH_3)CH_2NH]\}PF_6$ (Vc). This complex was prepared in the same manner as Va. The reaction of 0.10 g (0.23 mmol) of IIa and 21 µL (0.25 mmol) of 1,2-diaminopropane gave 0.081 g (85%) of Vc as yellow crystals. IR (CH₂Cl₂): 2055 (s), 2004 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.58 (s, C₅H₅), 5.60 and 6.70 (m, CH₂CH), 8.69 (d, CH₃). Mp 177-179 °C.

 $\{Cp(CO)_2Fe[CNHC(CH_3)_2CH_2NH]\}PF_6$ (Vd). By use of the method for the preparation of IIIb, 0.20 g (0.47 mmol) of IIb and 60 µL (0.48 mmol) of 2-methyl-1,2-diaminopropane were reacted in 40 mL of CH₂Cl₂ while stirring for 40 min. Yellow needles (0.172 g, 88%) of Vd were isolated. IR (CH₂Cl₂): 2050 (s), 2001 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.59 (s, C₅H₅), 6.44 (s, CH₂), 8.61 (s, 2 CH₃). Mp 246 °C dec.

{Cp(CO)₂Fe[CNH(CH₂)₂NCH₃]}PF₆ (Ve). This complex was prepared in the same manner as IIIb. Starting with 0.10 g (0.23 mmol) of IIa and 21 μ L (0.24 mmol) of N-methylethylenediamine in 20 mL of CH_2Cl_2 and stirring the mixture for 20 min, we isolated 0.063 g (66%) of Ve as yellow crystals. IR (CH₂Cl₂): 2052 (s), 2004 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.52 (s, C₅H₅), 6.19 (s, 2 CH₂), 6.68 (s, CH₃). Mp 178-180 °Č

 $\{Cp(CO)_2Fe[CNH(CH_2)_2NH]\}PF_6$ (Vf). The monotosylate salt of ethylenediamine was prepared by dissolving ethylenediamine (36 μ L, 0.54 mmol) and p-toluenesulfonic acid monohydrate (0.1028 g, 0.54 mmol) in 20 mL of CH₃CN containing enough CH₃OH to give a clear solution. Complex IIa (0.10 g, 0.23 mmol) was then added and the solution stirred for 2 h. The cloudy reaction mixture was evaporated to dryness, washed with Et₂O, and extracted with CH₂Cl₂. Addition of Et₂O to the CH₂Cl₂ extracts followed by cooling of the mixture to -20 °C gave 0.049 g (54%) of Vf as pale yellow crystals. IR (CH_2Cl_2) : 2053 (s), 2003 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.56 (s, C₅H₅), 6.22 (s, 2 CH₂). Mp 183-185 °C.

{[Cp(CO)₂FeCNCH₂-]₂}[PF₆]₂ (VI). A solution of 10 mL of CH₂Cl₂ containing ethylenediamine (16 µL, 0.24 mmol) was added dropwise with stirring to 10 mL of CH₂Cl₂ containing IIa (0.20 g, 0.47 mmol) over a period of 30 min. A precipitate slowly formed, and the reaction mixture was allowed to stir for an additional 45 min. The precipitate was collected by filtration and recrystallized from acetone with Et₂O at -20 °C to give 0.070 g (41%) of VI as a tan powder. IR (CH₃CN): 2211 (m), 2084 (s), 2037 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.21 (s, 2 C_5H_5), 5.49 (s, 2 CH_2). Mp 254 °C dec.

 $\{Cp(CO)_2Fe[CNH(CH_2)_2O]\}PF_6$ (VIIa). This was prepared in the same manner as IIIb. Starting with 0.20 g (0.47 mmol) of IIa and

29 μ L (0.48 mmol) of β -aminoethanol in 40 mL of CH₂Cl₂ and stirring the mixture for 15 min, we obtained 0.133 g (73%) of VIIa as cream-yellow needles. IR (CH₂Cl₂): 2063 (s), 2017 (s) cm⁻¹. 1 H NMR (acetone- d_6): τ 4.52 (s, C₅H₅), 5.20 and 6.10 (AA'BB', 2 CH₂). Mp 154–157 °C.

 ${Cp(CO)_2Fe[CNH(CH_2)_2S]}PF_6$ (VIIb). This was prepared by the same method as used for IIIh. The free amino thiol was generated from β -aminoethanethiol hydrochloride (0.08 g, 0.70 mmol) and stirred with IIa (0.10 g, 0.23 mmol) for 50 min to give 0.046 g (48%) of VIIb as yellow crystals. IR (CH₂Cl₂): 2059 (s), 2014 (s) cm⁻¹. ¹H NMR (acetone- d_6): τ 4.52 (s, C₅H₅), 5.64 and 6.50 (AA'BB', 2 CH₂). Mp 168–170 °Č

{Cp(CO)₂Fe(CN)} (VIII). Ammonia gas was bubbled through 15 mL of CH₂Cl₂ containing IIa (0.21 g, 0.49 mmol) for 1 h. The solution was filtered and concentrated to 5 mL. Upon addition of 10 mL of a 50:50 pentane/Et₂O mixture and cooling of the solution to -20 °C, 0.034 g (34%) of VIII was isolated as yellow needles. Its physical properties were identical with those reported previously.²¹

Acknowledgment. We appreciate support of this research by the National Science Foundation and the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division.

Registry No. Ia, 59654-63-6; Ib, 69532-09-8; IIa, 69532-11-2; IIb, 69532-13-4; IIc, 69532-15-6; IIIa, 56943-25-0; IIIb, 69532-17-8; IIIc, 69532-19-0; IIId, 69532-21-4; IIIe, 69532-23-6; IIIf, 69532-24-7; IIIg, 69532-26-9; IIIh, 69532-28-1; IIIi, 69532-30-5; IVa, 69532-32-7; IVb, 69532-34-9; IVc, 69532-36-1; Va, 69532-38-3; Vb, 69532-40-7; Vc, 69532-42-9; Vd, 69532-44-1; Ve, 69532-46-3; Vf, 69532-48-5; VI, 69532-50-9; VIIa, 69532-52-1; VIIb, 69532-54-3; VIII, 12152-37-3; $Cp(CO)_2Fe[C(SCH_3)_3], 69532-55-4; [CpFe(CO)_2]_2, 12154-95-9;$ BrCH₂C₆H₅, 100-39-0; CS₂, 75-15-0; CH₃SO₃F, 421-20-5; C₂H₅SO₃F, 371-69-7; CH₃NH₂, 74-89-5; *n*-PrNH₂, 107-10-8; *i*-PrNH₂, 75-31-0; cyclohexyl- NH_2 , 108-91-8; benzyl- NH_2 , 100-46-9; $C_6H_5NH_2$, 62-53-3; NH₂CH₂CH₂N(CH₃)₂, 108-00-9; NH₂CH(CH₃)C(=O)OCH₃·HCl, 2491-20-5; NH₂CH₂(CH₂)₃OH, 156-87-6; HNMe₂, 124-40-3; piperidine, 110-89-4; morpholine, 110-91-8; H₂N(CH₂)₃NH₂, 109-76-2; $o-C_6H_4(NH_2)_2$, 95-54-5; $H_2NCH(CH_3)CH_2NH_2$, 78-90-0; $\begin{array}{l} H_2NC(CH_3)_2CH_2NH_2, \ 811-93-8; \ H_2N(CH_2)_2NHCH_3, \ 109-81-9; \\ H_2N(CH_2)_2NH_2, \ 107-15-3; \ H_2N(CH_2)_2NH_3^+Ts^-, \ 14034-59-4; \end{array}$ H₂N(CH₂)₂OH, 141-43-5; H₂N(CH₂)₂SH·HCl, 156-57-0; NH₃, 7664-41-7.

References and Notes

- Fischer, E. O. Pure Appl. Chem. 1970, 24, 407-23; 1972, 30, 353-72.
 Cotton, F. A.; Lukehart, C. M. Prog. Inorg. Chem. 1972, 16, 487-613.
 Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. 1972, 72, 545-74.

- Cardin, D. J.; Cetinkaya, B.; Doyle, M. J.; Lappert, M. F. Chem. Soc. Rev. 1973, 2, 99-144. (4)
- (5) LeBozec, H.; Gorgues, A.; Dixneuf, P. H. J. Am. Chem. Soc. 1978, 100, 3946-7.
- (6)Lindner; E. J. Organomet. Chem. 1975, 94, 229-34.
- Raubenheimer, H. G.; Swanepoel, H. E. J. Organomet. Chem. 1977, (7)141. C21-2.
- Lappert, M. F.; Shaw, D. B. J. Chem. Soc., Chem. Commun. 1978, 146-7. Grundy, K. R.; Harris, R. O.; Roper, W. R. J. Organomet. Chem. 1975, 90. C34-6
- (10) Dobrzynski, E. D.; Angelici, R. J. Inorg. Chem. 1975, 14, 1513-8. (11) Farrar, D. H.; Harris, R. O.; Walker, A. J. Organomet. Chem. 1977, 124, 125-9
- (12)
- Dombek, B. D.; Angelici, R. J. Inorg. Synth. 1977, 17, 100-3. Benson, I. B.; Hunt, J.; Knox, A. R.; Oliphant, V. J. Chem. Soc., Dalton (13)Trans. 1978, 1240.
- Wnuk, T. A.; Angelici, R. J. Inorg. Chem. 1977, 16, 1173-9
- Brookhart, M.; Nelson, G. O. J. Am. Chem. Soc. 1977, 99, 6099–101. (a) Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432–8. (16)(b) Angelici, R. J.; Christian, P. A.; Dombek, B. D.; Pfeffer, G. A. J.
- Organomet. Chem. 1974, 67, 287-94. Angelici, R. J.; Blacik, L. J. Inorg. Chem. 1972, 11, 1754-8. McCormick, F. B.; Angelici, R. J.; Wagner, R. E.; Jacobson, R. A., to (18) be submitted for publication.
- (19) Heckl, B.; Werner, H.; Fischer, E. O. Angew. Chem., Int. Ed. Engl. 1968, 817 - 8
- (20)
- (22)
- (23)
- 7, 81/-8. Hoare, R. J.; Mills, O. S. J. Chem. Soc., Dalton Trans. 1972, 653-6. Dombek, B. D.; Angelici, R. J. Inorg. Chim. Acta 1973, 7, 345-7. Quick, M. H.; Angelici, R. J. J. Organomet. Chem. 1978, 160, 231. Ellis, J. E.; Flom, E. A. J. Organomet. Chem. 1975, 99, 263-8. Gansow, O. A.; Burke, A. R.; LaMar, G. N. J. Chem. Soc., Chem. Commun. 1972, 456-7. (24)